
On the anomalous temperature-dependent magnetostriction in intermetallic DyFe2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 2437

(http://iopscience.iop.org/0953-8984/16/13/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 14:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 2437–2446 PII: S0953-8984(04)73077-5

On the anomalous temperature-dependent
magnetostriction in intermetallic DyFe2

G J Bowden1, P A J de Groot, J D O’Neil, B D Rainford and A A Zhukov

School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

E-mail: gjb@phys.soton.ac.uk

Received 9 December 2003
Published 19 March 2004
Online at stacks.iop.org/JPhysCM/16/2437 (DOI: 10.1088/0953-8984/16/13/021)

Abstract
The anomalous temperature dependence of the magnetostriction in single-
crystal DyFe2 has been an unsolved problem in magnetism for some 27 years.
In this paper, it is shown that an explanation can be provided, within the
constraints of the Callen and Callen model, provided changes in the second-,
fourth- and sixth-order crystal field energies of the rare earth ion are all taken
into account. In particular, it is shown that the peculiar temperature dependence
of the magnetostriction in DyFe2 is due to competition between n = 2, 4 and
6 crystal field distortions, whose temperature dependence can be accurately
modelled using the Callen and Callen model.

1. Introduction

Since the early 1970s it has been known that the rare-earth-iron (REFe2) intermetallic
compounds exhibit giant magnetostriction (Clark and Belson 1972). Moreover, because of
their high Curie temperatures, the magnetostriction is appreciable even at room temperature.
As a result, the optimized binary intermetallic Tb0.3Dy0.7Fe1.9 (Terfenol-D) has found many
applications (e.g. Clark 1979, Greenough et al 1991, Claeyssen et al 1997).

However, rather surprisingly, the curious temperature dependence of the magnetostriction
in single-crystal DyFe2 has never been given an explanation (Clark et al 1977, Clark 1979).
At first sight DyFe2 seems to fly in the face of the Callen and Callen model (CCM), which
provides a satisfactory explanation of the temperature dependence of the magnetostriction, not
only for TbFe2 (Clark et al 1977) and TmFe2 (Abbundi and Clark 1978, Bleaney et al 1981),
but also for many other ferromagnetic compounds (Callen and Callen 1963, 1965a, 1965b).
In all of the above-cited compounds the magnetostriction falls monotonically with increasing
temperature, in complete contrast to that of DyFe2 shown in figure 1.

In this paper, an explanation of the magnetostriction in single-crystal DyFe2 is provided,
within the constraints of the CCM. It is shown that it is necessary to take into account not only
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Figure 1. The temperature dependence of the λ100 magnetostriction of DyFe2, after Clark et al
(1977). The full curve is a theoretical fit to the data based on (i) additional magnetostrictive terms
arising from higher-order crystal field gradients and (ii) ‘volume conservation’, as discussed in the
text.

the appearance of the quadratic crystal field terms as the lattice distorts, but also changes in
the energies of the fourth-order and sixth-order crystal field terms. The latter possess a much
faster temperature dependence than their quadratic counterparts and it is these terms that give
rise to the curious temperature behaviour of DyFe2 below 120 K.

The structure of this paper is as follows. Firstly, we give a brief description of the CCM, as
it applies to the REFe2 intermetallic compounds. Secondly, we detail some results of the point
charge model (PCM) in the presence of uniform distortions. Thirdly, we apply our results to
the easy axis [111] intermetallic TbFe2 which is known to follow the CCM. Finally, we address
the more difficult problem of the magnetoelastic behaviour of the easy axis [001] intermetallic
DyFe2.

2. The Callen and Callen model

Following Bowden et al (1968), Atzmony and Dariel (1973, 1976), the Hamiltonian for a RE
ion subject to both exchange and crystal field terms can be written:

H = HEX + HCF (1)

where the magnetic exchange is given by

HEX = gµB BEX(T )JZ (2)

and

HCF = B4[O40 + 5Oc
44] + B6[O60 − 21Oc

64] (3)

is the cubic crystal field Hamiltonian. Here

(i) the temperature dependence of the RE–Fe exchange field BEX(T ) is assumed to follow
that of the 57Fe magnetic hyperfine field,

(ii) estimates of the cubic crystal field coefficients B4 and B6 have been given by Atzmony
and Dariel (1973, 1976), and
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Figure 2. Normalized expectation values of 〈On0〉EX for n = 1, 2, 4, and 6, as a function of
reduced temperature, after Bowden et al (1968).

(This figure is in colour only in the electronic version)

(iii) the crystal field parameters and operators B40, O40, etc, are defined, for example, by
Hutchings (1964).

In the CCM, it is assumed that the magnetic exchange term is dominant. Thus to first
order, the free energy can be written:

F = FEX + 〈HCF〉EX (4)

where the crystal field term 〈HCF〉EX is evaluated using the simple Zeeman wavefunctions
appropriate to HEX. Note that, if the direction of magnetization is [001], only the diagonal
terms in the crystal field Hamiltonian contribute to the first-order change in the free energy.
Thus

〈HCF〉EX = B4〈O40〉EX + B6〈O60〉EX. (5)

In figure 2 we show the temperature dependence of the normalized expectation values 〈On0〉EX

for n = 1, 2, 4 and 6. Note that 〈On0〉EX falls more rapidly with increasing temperature, as
n is increased. In obtaining these results we have used the T = 0 K exchange Hamiltonian
given by Bowden et al (1968)

HEX = 135JZ (K) (6)

together with a Curie temperature TC = 635 K (Buschow 1977). Atzmony and Dariel (1973,
1976) have given a smaller value of the exchange field (100Jz). However, if we use this value
we do not obtain good agreement between theory and experiment (see figure 1 of this paper
and figure 6 of Bowden et al (1968)).

So far we have ignored magnetostriction. In addition to the crystal field terms HCF it is
necessary to add both the magnetoelastic terms and elastic energy terms:

EME = b1(α
2
xεxx + α2

yεyy + α2
z εzz) + b2(αxαyεxy + αxαzεxz + αyαzεyz) (7)

EElas = 1
2 C11[e2

xx + e2
yy + e2

zz] + 1
2 C44[e2

xy + e2
xz + e2

yz] + C12[exx eyy + exx ezz + eyyezz] (8)
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Table 1. Dominant second-order crystal field terms for specific distortions, together with their
appropriate crystal field operators expressed in tesseral harmonic form. All distortions, except
those shown explicitly, are zero.

Shear Crystal field Tetragonal Crystal field
distortion terms distortion terms

εxy = εyx B S
22(εxy) εxx B20(εxx ), BC

22(εxx )

εxz = εzx Bc
21(εxz) εxx B20(εxx ), BC

22(εxx )

εzy = εyz B S
21(εzy) εyy B20(εyy), BC

22(εyy)

Bc
21(ε) = B S

21(ε) = 2B S
22(ε) B20(εxx ) = B20(εyy) = − 1

2 B20(εzz)

Crystal field operators

O0
2 = [3J 2

z − J (J + 1)]

Oc
21 = 1

2 [JZ JX + JX JZ ], Os
21 = 1

2 [JZ Jy + Jy JZ ]

Oc
22 = [J 2

x − J 2
y ] = 1

2 [J 2
+ + J 2−], Os

22 = [Jx Jy + Jy Jx ] = 1
2i [J 2

+ − J 2−]

where (i) b1 and b2 are the lowest-order magnetoelastic constants, (ii) αx , etc, are the direction
cosines, (iii) eαα = εαα (α = x, y, z) and eαβ = (εαβ + εβα), etc, are the strains defined,
for example, by Kittel (1971), and (iv) C11, C44 and C12 are the elastic constants (Blessing
1976). In the past, equations (7) and (8) have been used as the starting point for many authors
(e.g. Clark 1979, de la Fuente et al 2001). But in this paper we will show that equations (7)
and (8) are insufficient to describe the magnetostriction in DyFe2.

3. The point charge model

Magnetoelasticity in REFe2 compounds takes place because the distortion lowers the symmetry
at the RE ion and hence its crystal field energy. In this paper, we use the PCM to identify the
changes in the crystal-field Hamiltonian HCF, following uniform distortions of the lattice. It
is, of course, well known that, while the PCM model correctly predicts the symmetry of the
problem, it is unlikely to yield quantitative values of, say, the crystal field parameters B4 and
B6. Nevertheless, it can be used to correctly identify the additional crystal field terms that arise
as a result of magnetostriction. As we shall see the crystal field gradients ∂ Bn/∂ε can then be
used as parameters to fit the experimental data. For a full review of the PCM model the reader
is referred to Hutchings (1964).

Following Kittel (1971), for small uniform distortions of the cubic lattice we write[ x ′
y ′
z′

]
=
[ 1 + εxx εxy εxz

εyx 1 + εyy εyz

εzx εzy 1 + εzz

][ x
y
z

]
(9)

where it is understood that the distortions εαα are small (<1%). The diagonal distortions
εxx , etc, refer to extensions along the x , y and z axes of the cubic lattice, which give rise to
tetragonal distortions. However, the off-diagonal elements εxy , etc, the so-called shear terms,
give rise to rhombohedral type distortions of the cubic lattice provided we set εxy = εyx ,
etc. In table 1, we summarize the various second-rank crystal field terms that arise, and their
appropriate Steven’s crystal field operators, for specific distortions.

In practice, calculations show that linear superposition holds well. For example, if we
set εxx = εyy = εzz = 0 and εxy = εxz = εyz = ε, for a rhombohedral distortion, the PCM
shows that all three coefficients B S

22, BC
21 and B S

21 are now non-zero, but with practically the
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Figure 3. Bc
21(εxz), for the RE lattice only, as a function of the tetrahedral distortion εxz .

same values as those obtained independently of each other. Thus for a rhombohedral shear
distortion, an additional strain-dependent crystal field Hamiltonian:

H′
CF = B S

22(ε)O S
22 + BC

21(ε)OC
21 + B S

21(ε)O S
21

= Bc
21(ε){ 1

2 [Jx Jy + Jy Jx ] + 1
2 [Jx Jz + Jz Jx] + 1

2 [Jy Jz + Jy Jz]} (10)

must be taken into account. Note that, on comparing equations (7) and (10), there is a one-to-
one correspondence between Bc

21(ε) and the usual magnetostrictive coefficient b2, provided
we replace the dimensionless products such as (αxαy ∝ xy) by 1

2 [Jx Jy + Jy Jx ]/J (J + 1).
Finally, one further point should be made. Our calculations reveal that the coefficients

Bc
21(ε) are, in general, linear functions of the distortion. An example is shown in figure 3.

On fitting such curves we find

Bc
21(εxz) = ∂ Bc

21

∂εxz
εxz = {qRE(−31.5) + qFe(3.07)}εxz (11)

where qRE and qFe are the point charges on the RE and Fe atoms, respectively. Within the
constraints of the PCM therefore, the dominant contribution to Bc

21(εxz) is from the RE lattice.
This result is used in the following section to make an estimate of the magnetostriction in
TbFe2, at 0 K.

4. A PCM estimate of the magnetostriction in TbFe2

Unlike DyFe2, both TbFe2 and TmFe2 possess a [111] direction of easy magnetization, as
dictated by the signs of the crystal field coefficients B4 and B6 (Bowden et al 1968). Moreover
for both these compounds it is known that (i) the shear terms dominate the magnetostriction and
(ii) the latter is well described by equations (7) and (8) (Abbundi and Clark 1978). In addition,
we note that, if we set the diagonal terms equal to zero and the shear terms εxy = εxz = εyz = ε,
the volume is conserved to second order in ε.

To make an estimate of the magnetostriction in TbFe2, it is necessary to recast equation (10)
into a new frame of reference where the new z axis coincides with the [111] axis, the direction
of preferred magnetization.
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Table 2. Transformation of the rank 2 operators on rotating to a new coordinate system where the
z axis is aligned with the [111] direction. After Arif et al (1975).

O0
2 → O2

2 (c) − 2
√

2O1
2 (c)

O1
2 (c) → 1

6

[
O0

2 − √
2O1

2 (c) +
√

6O1
2 (s) − O2

2 (c) +
√

3O2
2 (s)

]
O1

2 (s) → 1
6

[
O0

2 − √
2O1

2 (c) +
√

6O1
2 (s) − O2

2 (c) − √
3O2

2 (s)
]

O2
2 (c) → − 1√

6
O1

2 (s) − 1
3 O2

2 (s)

O2
2 (s) → 1

3

[
O0

2 + 2
√

2O1
2 (c) + 2O2

2 (c)
]

Using the transformations set out in table 2, and keeping only the diagonal terms, we find

〈H′
CF〉EX → 1

2

∂ BC
21

∂εxz
〈O20〉EXε. (12)

To this we must add the elastic energy term:

EElas = 2C44[ε2
xy + ε2

xz + ε2
yz] = 6C44ε

2. (13)

Consequently, on minimizing with respect to ε, we find

ε = −
∂ BC

21
∂εxz

〈O20〉EX

24C44
. (14)

Thus the temperature dependence of ε follows that of 〈O20〉EX = 〈3J 2
z − J (J + 1)〉EX

(see n = 2 of figure 2), as expected (Clark 1979). Moreover, on using (i) C44 =
3.84 × 1010 (J m−3) {=1.367 × 105 (K/ion)} (Blessing 1976) and (ii) ∂ Bc

21/∂εxz =
{qRE(−31.5)} (K/ion) (see equation (11), with qRE set equal to +3), we find ε = 3024 ppm
at T = 0 K. Finally, on noting that ∂�/� = 2ε for rhombohedral distortions, we conclude
that λ111 = ∂�/� = 6048 ppm. Rather surprisingly, this estimate compares favourably
with the value given by Clark (1979) of λ111 = 4400 ppm at 0 K. Alternatively, if we set
λ111 = 4400 ppm, the calculated field gradient is found to be ∂ Bc

21/∂εxz = −68.7 (K/ion)

Note, however, that the above treatment does not involve internal distortions, as discussed by
Cullen and Clark (1977).

Finally, we note without proof that the PCM calculations also reveal that higher-order
crystal field gradients ∂ Bn0/∂εxz , for n = 4 and 6, are negligible. However, this is definitely
not the case for the tetrahedral distortion discussed in the following section.

5. Magnetostriction in DyFe2

In the case DyFe2, with a [001] easy axis, it is the tetragonal terms that come into play. For
our purposes therefore we set the shear terms equal to zero. For the undistorted lattice, with
the unit cell parameter a = 7.325 Å, the PCM model yields

B40 = qRE[−6.66 × 10−4] + qFe[+8.75 × 10−4]

B44(c) = 5B40

B60 = qRE[−3.62 × 10−7] + qFe[−1.65 × 10−7]

B64(c) = −21B60.

(15)

These numbers can be compared with the estimates of Atzmony and Dariel (1973, 1976) for
the crystal field parameters at the Dy site:

B40 = −3.02 × 10−3 K
B60 = −7.22 × 10−6 K.

(16)
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Table 3. The PCM calculations of the crystal field coefficients Bn0 and their gradients. The
Lorentz sphere used to obtain these numbers was set at 12a, with a = 7.325 Å.

Sublattice
Bn0 εzz εxx

RE B20 = qRE[+3.27εzz + 26.0ε2
zz ] qRE[−1.64εxx − 13.0ε2

xx ]
RE B40 = qRE[−6.66 × 10−4 + 7.36 × 10−3εzz] qRE[−6.66 × 10−4 + 1.30 × 10−3εxx ]
RE B60 = qRE[−3.62 × 10−7 + 2.34 × 10−6εzz ] qRE[−3.62 × 10−7 + 9.86 × 10−8εxx + 1.57 × 10−6ε2

xx ]
Fe B20 = qFe[−10.64εzz ] qFe 5.32εxx

Fe B40 = qFe[+8.75 × 10−4 − 2.53 × 10−3εzz] qFe[+8.75 × 10−4 − 9.18 × 10−4εxx ]
Fe B60 = qFe[−1.65 × 10−7 − 7.45 × 10−6εzz] qFe[−1.65 × 10−7 + 4.30 × 10−6εxx ]

Isotropic compression

B40 = qRE[−6.66 × 10−4 + 3.33 × 10−3ε] + qFe[+8.75 × 10−4 − 4.37 × 10−3ε]
B60 = qRE[−3.62 × 10−7 + 2.54 × 10−6ε] + qFe[−1.65 × 10−7 + 1.16 × 10−6ε]

Given equations (15) and (16) we can solve for qRE and qFe, finding qRE = +16.0 and
qFe = +8.7. Since we expect qRE ∼ +3 and qFe perhaps negative (for charge neutrality),
this calculation illustrates the difficulties associated with the PCM in providing quantitative
estimates of the crystal field parameters Bno. Nevertheless, the PCM does provide estimates
whose absolute values can be believed to, say, within an order of magnitude.

In the presence of a tetragonal distortion, the quadratic crystal field terms B20 and BC
22

make their appearance. In addition, the coefficients B40 and B60 change slightly and the ratios
B44(c) = 5B40 and B64(c) = −21B60 for cubic symmetry fail. A summary of the PCM
calculations for the diagonal Bno terms can be seen in table 3. In general, the gradients are
found to be linear. But where there is noticeable curvature, a quadratic term has been included.

Note the dramatic change in B60 as a function of distortion εαα , for the Fe sublattice. Also
included in table 3 are the calculated values of B40 and B60 for the isotropic compression ε.

To reduce the number of parameters, it is helpful to try and establish relationships between
the various gradients. For example, PCM calculations show that

∂ B20/∂εxx = ∂ B20/∂εyy = − 1
2∂ B20/∂εzz. (17)

This is to be expected. If we compress the lattice equally in all directions εxx = εyy =
εzz = ε, cubic symmetry is maintained and the total change in B20 must be zero. However,
this conservation rule does not apply to B40 and B60, both of which increase in magnitude as
the lattice is compressed. Thus

∂ B40

∂εxx
= 1

2

[
dB40

dε
− ∂ B40

∂εzz

]
(18)

where (dB40/dε) is the change in B40 following isotropic compression. PCM calculations show
that this indeed is the case, again demonstrating that the assumption of linear superposition
is upheld. But there are no simple relationships between (∂ B40/∂εzz) and (∂ B40/∂εxx), and
(∂ B60/∂εzz) and (∂ B60/∂εxx). Thus we are left with the rather disagreeable fact that five
parameters may be required to fit the magnetoelastic data of DyFe2.

A possible way around this impasse can be devised by noting that within the PCM

B40 ∝ 1/a5 and B60 ∝ 1/a7 (19)

where a is the value of the unit cell. This result can be used to show that
dB40

dε
= −5B40 and

dB60

dε
= −7B60 (20)
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for isotropic compression, in agreement with the calculations set out in table 3. Thus, if we
use the crystal field parameters given in equation (16), the problem can be reduced to the three
parameters ∂ B20/∂εzz, ∂ B40/∂εzz and ∂ B60/∂εzz . However, such an approach remains heavily
reliant on the predictions of the PCM, embodied in equations (19) and (20).

In summary, therefore, the crystal field energy associated with the tetragonal distortion is
given by

EME = ∂ B20

∂εzz
〈O20〉EXεzz +

∂ B40

∂εzz
〈O40〉EXεzz +

∂ B60

∂εzz
〈O60〉EXεzz

− 1

2

∂ B20

∂εzz
〈O20〉EXεxx +

∂ B40

∂εxx
〈O40〉EXεxx +

∂ B60

∂εxx
〈O60〉EXεxx

− 1

2

∂ B20

∂εzz
〈O20〉EXεyy +

∂ B40

∂εxx
〈O40〉EXεyy +

∂ B60

∂εxx
〈O60〉EXεyy (21)

for an arbitrary tetrahedral distortion εzz �= εxx = εyy. To this we must add the elastic energy:

EElas = 1
2 C11[ε2

xx + ε2
yy + ε2

zz] + C12[εxxεyy + εxxεzz + εyyεzz]. (22)

On minimizing with respect to the three distortions we find(
εxx

εyy

εzz

)
= 1

η

[C11 + C12 −C12 −C12

−C12 C11 + C12 −C12

−C12 −C12 C11 + C12

]( dx

dy

dz

)
(23)

where

η = (C11 − C12)(C11 + 2C12) (24)

and ( dx

dy

dz

)
=



+ 1
2

∂ B20
∂εzz

〈O20〉EX − ∂ B40
∂εxx

〈O40〉EX − ∂ B60
∂εxx

〈O60〉EX

+ 1
2

∂ B20
∂εzz

〈O20〉EX − ∂ B40
∂εxx

〈O40〉EX − ∂ B60
∂εxx

〈O60〉EX

− ∂ B20
∂εzz

〈O20〉EX − ∂ B40
∂εzz

〈O40〉EX − ∂ B60
∂εzz

〈O60〉EX


 . (25)

Note that dx = dy and therefore εxx = εyy, as expected.
Despite the complexity of equations (23)–(25), some salient facts can already be noted.

Firstly, the temperature dependence of the magnetostriction now depends not only on 〈O20〉EX

but also on 〈O40〉EX and 〈O60〉EX. Secondly, since the temperature dependence of the
expectation values of the operators 〈On0〉EX is faster for higher n (see figure 2), it is quite
plausible that the 〈O60〉EX term is responsible for the fast temperature dependence of λ100

below 100 K. These points are taken further in the next section.

6. Volume conservation

So far, we have made no comments regarding volume conversation during the magnetostriction
process. However, if the magnetostriction is driven solely by the quadratic crystal field term,
it is easily shown that

εzz = 1

(C11 − C12)

∂ B20

∂εzz
〈O20〉EX

εxx = εyy = − 1
2εzz .

(26)

Thus (i) volume is conserved and (ii) the magnetostriction follows the classic Callen and
Callen prediction: namely that the magnetostriction decreases monotonically with increasing
temperature according to 〈O20〉EX. Since this is not found experimentally in DyFe2, higher-
order crystal field terms must be important.
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In practice, there is only one way of incorporating the higher-order fourth- and sixth-order
terms, while conserving volume at all temperatures. We must set

∂ B40

∂εxx
= −1

2

∂ B40

∂εzz
and

∂ B60

∂εxx
= −1

2

∂ B60

∂εzz
(27)

(see equation (32) below). However, in view of equations (18) and (20), this implies that the
isotropic gradients dB40/dε and dB60/dε are zero. Nevertheless, as we shall see below, the
constant volume approximation does provide a reasonable fit to the magnetostriction data.

Given equations (17) and (27) it is easily shown that

εzz = − 1

(C11 − C12)

[
∂ B20

∂εzz
〈O20〉EX +

∂ B40

∂εzz
〈O40〉EX +

∂ B60

∂εzz
〈O60〉EX

]
εxx = εyy = − 1

2εzz .

(28)

Thus the magnetostriction takes the form of a simple linear combination:

εzz = α〈O20〉n + β〈O40〉n + γ 〈O60〉n (29)

where the 〈On0〉n are the normalized values of the 〈On0〉EX, as shown in figure 2. From a least
squares fit to the experimental data shown in figure 1 we find

α = +220(15) ppm; β = −1048(11) ppm; γ = 758(4) ppm. (30)

The errors shown are only approximate. They are derived from computed fits where the RE
exchange field Hamiltonian has been set to 135(5)Jz. If the exchange term is set at a 100Jz (the
estimate of the RE exchange field given by Atzmony and Dariel (1973, 1976)), the minimum
in the calculated magnetostriction moves noticeably towards a lower temperature.

From an examination of figure 1, it will be observed that the agreement between theory
and experiment is very reasonable. Thus we are able, at last, to gain a detailed insight into the
nature of the magnetostriction in DyFe2. At low temperatures the ∂ B40/∂εzz term (∼1000 ppm)
is primarily responsible for the negative contraction, but this is offset by smaller positive
expansions from both ∂ B20/∂εzz and ∂ B60/∂εzz terms. However, since the positive expansion
originating from ∂ B60/∂εzz falls off very rapidly with increasing temperature, this gives rise
to a minimum in the contraction at about 120 K. Finally, at higher temperatures the ∂ B20/∂εzz

term dominates and gives rise to a small positive magnetostriction above room temperature.
Given the results embodied in equation (31), it is possible to deduce the three field gradients

involved:
∂ B20

∂εzz
= −0.579(39); ∂ B40

∂εzz
= +1.772(20) × 10−2; ∂ B60

∂εzz
= −2.329(12) × 10−4

(31)

where we have used, the stiffness constants C11 = 4.16×105 and C12 = 1.367×105 (K fu−1)

(Blessing 1976). These field gradients, obtained from the magnetostriction data, should not be
seen as being at odds with the predictions of the PCM. For example, if we use equations (16)
and (20) we find the isotropic gradients dB40/dε = +1.51×10−3 and dB60/dε = 5.44×10−3.
Such numbers are consistent, within the accuracy afforded by the PCM.

Finally, we note that further progress can be made by dropping the volume conserving
restriction imposed by equation (27). However, this inevitably leads to coupling between the
εzz and εxx (=εyy) strains via(

εxx

εzz

)
= 1

η

(
C11 −C12

−2C12 C11 + C12

)(
dx

dz

)
. (32)

Thus the problem becomes less transparent. Moreover, in place of three parameters,five crystal
field gradients are now required to fit the magnetostrictive data. In practice, of course, it is
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always possible to increase the agreement between theory and experiment simply by increasing
the number of adjustable parameters. However, before this is attempted, simultaneous
measurements of both εzz and εxx should be made. This information could then be used
to place constraints on the relationship between the crystal field gradients ∂ Bn0/∂εxx and
∂ Bn0/∂εzz , for n = 4 and 6.

7. Discussion and conclusions

In this paper an explanation has been given for the anomalous temperature dependence of the
magnetostriction in single-crystal DyFe2, within the canons of the CCM. Provided higher-order
crystal field terms are taken into account, it is possible to fit the magnetoelastic data with just
three field gradients. Indeed the problem can be turned on its head and the measured magne-
tostriction used to calculate the crystal field gradients ∂ Bn0/∂εαα for the REFe2 intermetallic
compounds. As expected, these experimentally determined gradient values differ from the
predictions of the simple PCM model. Clearly a more refined ab initio model is needed to
calculate the crystal field coefficients B4 and B6 and their gradients ∂ Bn0/∂εαβ , etc. One possi-
bility is to use a first principles density functional approach. This has been used, for example,
to calculate the crystal field coefficients for hexagonal SmCo5 (Richter et al 1992). But to the
authors’ knowledge no such calculations have been performed for the gradients ∂ Bn0/∂εαβ .

Finally, some cautionary remarks should be made. In the above treatment it has been as-
sumed that the stiffness constants C11, etc, are all temperature-independent. This is unlikely to
be the case. Both Young’s modulus and the shear modulus have been measured and are known
to be temperature-dependent, particularly in those REFe2 alloys which exhibit magnetic com-
pensation (see the review by Clark 1979). In particular, the Young’s modulus in DyFe2 falls by
some 10% as the temperature is raised from 0 to 300 K (Klimker et al 1974). Similar comments
also apply of course to the field gradients ∂ Bn0/∂ε, which are unlikely to remain constant as the
lattice expands on warming. However the essential physics of the magnetostrictive processes
in DyFe2 have been identified, and a 27 year problem in magnetism laid to rest.
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